4 research outputs found

    Proposition d’un modèle générique de pilotage pour un système à flux guidés: Application des concepts holoniques au transport intelligent (FMS/PRT)

    No full text
    Thesis addresses the problem of controlling a system based on physical flow in the field of FMS (Flexible Manufacturing System) and PRT (Personal Rapid Transit). The flow is considered as constitued of "intelligent" entities which become "intelligent products" in the case of (FMS) or “intelligent vehicles" in the case of (PRT). A model-based on decision-making entities with regard to the control (SAE: System-based Active Entities) is offered. The SAE model is tranformed into an "holonic model" and a generic holon AGH (Active Generalized Holon) is introduced as an holonic component of foundation. Then, the HSAE holonic model (Holonic System-based Active Entities) for the control of an “intelligent” physical flow is proposed. This model puts the emphasis on the "flow holon" (FH) which allos to model, for instance, an “intelligent” product or an “intelligent” vehicle. The "flow holon" is able of making decisions with regard to the process allocation and/or routing. The HSAE model includes a static part and a behaviour part. This last part is based on the concept of "open-control". It combines an explicit control of type "master-slave" with an implicit control based on “influence” of the behaviour of entities. HSAE model is then the object of an experimental study to assess its validity. Experimentation wase performed on the flexible cell of the CIMR laboratory in Bucharest (Romania) for the field of FMS and on the platform AIP-PRIMECA Nord-Pas de Calais of Valenciennes (France) for the field of PRT. HSAE model has been of great usefulness in acting as a reference frame in the elaboration of the control architectures adopted in both fields of studies.La thèse traite du pilotage d’un système à base de flux physique dans le domaine des FMS (Flexible Manufacturing System) et des PRT (Personal Rapid Transit). Le flux est considéré comme constitué d’entités "intelligentes" qui deviennent un produit "intelligent" (FMS) ou un véhicule "intelligent" (PRT) selon le domaine. Un modèle à base d’entités décisionnelles de pilotage (SEA : Système à base d’Entités Actives) est proposé. Le modèle SEA est "holonifié" et à cet effet un holon générique HAG (Holon Actif Généralisé) est introduit comme composant holonique de base. Ensuite, un modèle holonique SEAH (Système à base d’Entités Actives Holoniques) pour le pilotage d’un flux physique "intelligent" est proposé. Ce modèle fait plus particulièrement apparaître le holon flux (HF) qui permet de modéliser un produit « intelligent » ou un véhicule "intelligent" capable de prendre des décisions de pilotage au regard des processus d’allocation et/ou de routage. Le modèle SEAH comporte une partie statique et une partie comportementale. Cette dernière partie est fondée sur le concept d’"open-control" et combine un pilotage explicite de type "maître-esclave" avec un pilotage implicite par influence du comportement des entités. Le modèle SEAH fait l’objet d’une étude expérimentale pour appréhender sa validité. Des expérimentations ont été effectuées sur la cellule flexible du laboratoire CIMR de Bucarest pour le domaine du FMS, et sur la plateforme AIP-Priméca Nord-Pas-de-Calais de Valenciennes pour le domaine du PRT. Le modèle SEAH a été d’une grande utilité en servant de cadre de référence dans l’élaboration des architectures de pilotage retenues dans les deux domaines d’études

    Digital transformation of manufacturing. Industry of the future with cyber-physical production systems

    Get PDF
    This paper analyses the main research direction for the digital transformation of manufacturing and its important drivers: cloud services and resource virtualization that have led to the new Cloud Manufacturing (CMfg) model – an industrial replica of Cloud Computing. This model is adopted for the higher layer of the Manufacturing Execution System (e.g. the centralised, hierarchical System Scheduler), while its lower layers distribute intelligence through agent- and service orientation in the holonic paradigm. In this approach, Intelligent Manufacturing Systems are assimilated to Cyber-Physical Production Systems in which informational and operational technologies are merged, the shop floor physical reality being mirrored by virtual counterparts – the digital twins that represent abstract entities specific for the manufacturing domain: products, orders and resources. Industry 4.0 represents the vision for the Industry of the Future which is based on Cyber-Physical Production Systems that assure the flexible, dynamically reconfigurable control of strongly coupled processes. In this picture of the future manufacturing industry, the Industrial Internet of Things framework provides connectivity and interoperability to integrate communications between different kinds of things: products, orders and resources and legacy manufacturing devices to the web service ecosystem. The paper describes the scientific issues related to big data processing, analytics and intelligent decision making through machine learning in predictive resource maintenance, optimized production planning and control, lists solutions and proposes new research directions.info:eu-repo/semantics/publishedVersio
    corecore